The pitch angle paradox and radiative life times in a synchrotron source

نویسنده

  • Ashok K. Singal
چکیده

In synchrotron radiation there is a paradox whether or not the pitch angle of a radiating charge varies. The conventional wisdom is that the pitch angle does not change during the radiation process. The argument is based on Larmor’s radiation formula, where in a synchrotron case the radiation power is along the instantaneous direction of motion of the charge. Then the momentum loss will also be parallel to that direction and therefore the pitch angle of the charge would remain unaffected. The accordingly derived formulas for energy losses of synchrotron electrons in radio galaxies are the standard text-book material for the last 50 years. However, if we use the momentum transformation laws from special relativity, then we find that the pitch angle of a radiating charge varies. While the velocity component parallel to the magnetic field remains unaffected, the perpendicular component does reduce in magnitude due to radiative losses, implying a change in the pitch angle. This apparent paradox is resolved when effects on the charge motion are calculated not from Larmor’s formula but from Lorentz’s radiation reaction formula. We derive the exact formulation by taking into account the change of the pitch angle due to radiative losses. From this we first time derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiative losses and cut-offs of energetic particles at relativistic shocks

We investigate the acceleration and simultaneous radiative losses of electrons in the vicinity of relativistic shocks. Particles undergo pitch angle diffusion, gaining energy as they cross the shock by the Fermi mechanism and also emitting synchrotron radiation in the ambient magnetic field. A semi-analytic approach is developed which allows us to consider the behaviour of the shape of the spec...

متن کامل

Different Types of Pitch Angle Control Strategies Used in Wind Turbine System Applications

The most common controller in wind turbine is the blade pitch angle control in order to get the desired power. Controlling the pitch angle in wind turbines has a direct impact on the dynamic performance of the machine and fluct­uat­io­ns in the power systems. Due to constant changes in wind speed, the wind turbines are of nonlinear and multivariate system. The design of a controller that can ad...

متن کامل

Type-2 fuzzy logic based pitch angle controller for fixed speed wind energy system

In this paper, an interval Type-2 fuzzy logic based pitch angle controller is proposed for fixed speed wind energy system (WES) to maintain the aerodynamic power at its rated value. The pitch angle reference is generated by the proposed controller which can compensate the non-linear characteristics of the pitch angle to the wind speed. The presence of third dimension in the Type-2 fuzzy logic c...

متن کامل

Designing a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed

One of the main tasks of the control systems in the wind turbines is to maintain the power of the wind when its wind speed proceed its nominal value. Because the failure to maintain the power in its nominal value in the region of the turbine curve damages the turbine and increases the mechanical stress. This object is obtained by controlling the pitch angle in the third region of the turbine cu...

متن کامل

The effect of hemispherical chevrons angle, depth, and pitch on the convective heat transfer coefficient and pressure drop in compact plate heat exchangers

Plate heat exchangers are widely used in industries due to their special characteristics, such as high thermal efficiency, small size, light weight, easy installation, maintenance, and cleaning. The purpose of this study is to consider the effect of depth, angle, and pitch of hemispheric Chevrons on the convective heat transfer coefficient and pressure drop. In the simulation of the heat ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016